Zusammenfassung

Agriculture, and in particular livestock, uses nutrients inefficiently, contributing to water and air pollution and global warming. One of the objectives of the Green Deal of the European Commission (EC), through the Farm to Fork strategy, is the reduction of nutrient losses by at least 50% while ensuring the soil fertility. The EC expects that this will reduce the use of fertilisers by at least 20% by 2030. Integrated nutrient management plans will be developed by Member States with the objective of reducing and preventing further pollution from excessive use of fertilisers, while encouraging nutrient recycling from organic waste as fertilisers. At the same time, the EC encourages increasing information to consumers through harmonised labelling and establishes targets to reduce food waste.

Circular Agronomics aims to convert agriculture into a more circular and sustainable sector through short- and long-term measures from practical innovations to costumer awareness and facilitating legislation. With many of the developed innovative solutions a significant reduction of nitrogen emissions, in particular ammonia (NH3), was achieved. Besides, the harmful greenhouse gas (GHG) nitrous oxide (N2O, almost 300 times the Global Warming Potential as carbon dioxide over 100 years) was reduced significantly (e.g. >75 % due to fertiliser reduction in the trials with N efficient genotypes of winter wheat). Results are very promising for a transition to an environment- and climate-friendly agriculture, when farmers are able to invest in such innovations and build up the necessary knowledge. At the same time, consumers need transparent product labelling to make the right decision based on their norms.

Zusammenfassung

The Data Management Plan (DMP) is a guidance document, which introduces a series of clear rules and procedures to improve data management during the project and foster the reuse of publications and data in open access.

Zusammenfassung

Eine aktuelle Planung eines wassersensiblen Stadtkonzeptes für ein Berlin Stadtumbau- und Neubaugebiet wurde modelltechnisch geprüft. Durch die konsequente Umsetzung von Low Impact Development (LID) konnte das 76 ha große Gebiet fast vollständig abgekoppelt werden. Bezogen auf das Kanaleinzugsgebiet entspricht dies einer Abkopplung von 16 %, die wiederum zu einer Reduktion von Mischwasserüberläufen von 23 % führt. Die wasserwirtschaftliche Wirksamkeit wird zwar bei mangelnder Pflege eingeschränkt, der Effekt auf Mischwasserüberläufe bleibt aber nahezu identisch. Der große Effekt von realistischen LID-Umsetzungen und die Robustheit dieses Effektes gegenüber Maßnahmenausfällen stellt eine Empfehlung für die zunehmende Transformation von Entwässerungssystemen zu wassersensiblen Entwürfen dar.

Zusammenfassung

As a potential solution to better use water-embedded resources, the transition to circular water systems and services requires technology-focused approaches that can enhance a positive reception by organizations in the public, business and government sectors. NextGen focuses on water, energy and nutrients/material cycles in the water and wastewater sector to make them economically and environmentally attractive. This report addresses new approaches and best practices for closing the energy cycle in the water sector. Five NextGen case studies developed and demonstrated a wide range of innovative energy recovery technologies/approaches: Athens (EL), Filton Airfield (UK), Braunschweig (DE), Spernal (UK) and Westland (NL).

DOI
Zusammenfassung

Norovirus infections are among the major causes of acute gastroenteritis worldwide. In Germany, norovirus infections are the most frequently reported cause of gastroenteritis, although only laboratory confirmed cases are officially counted. The high infectivity and environmental persistence of norovirus, makes the virus a relevant pathogen for water related infections. In the 2017 guidelines for potable water reuse, the World Health Organization proposes Norovirus as a reference pathogen for viral pathogens for quantitative microbial risk assessment (QMRA). A challenge for QMRA is, that norovirus data are rarely available over long monitoring periods to assess inter-annual variability of the associated health risk, raising the question about the relevance of this source of variability regarding potential risk management alternatives. Moreover, norovirus infections show high prevalence during winter and early spring and lower incidence during summer. Therefore, our objective is to derive risk scenarios for assessing the potential relevance of the within and between year variability of norovirus concentrations in municipal wastewater for the assessment of health risks of fieldworkers, if treated wastewater is used for irrigation in agriculture. To this end, we use the correlation between norovirus influent concentration and reported epidemiological incidence (R²=0.93), found at a large city in Germany. Risk scenarios are subsequently derived from long-term reported epidemiological data, by applying a Bayesian regression approach. For assessing the practical relevance for wastewater reuse we apply the risk scenarios to different irrigation patterns under various treatment options, namely “status-quo” and “irrigation on demand”. While status-quo refers to an almost all-year irrigation, the latter assumes that irrigation only takes place during the vegetation period from May - September. Our results indicate that the log-difference of infection risks between scenarios may vary between 0.8 and 1.7 log given the same level of pre-treatment. They also indicate that under the same exposure scenario the between-year variability of norovirus infection risk may be > 1log, which makes it a relevant factor to consider in future QMRA studies and studies which aim at evaluating safe water reuse applications. The predictive power and wider use of epidemiological data as a suitable predictor variable should be further validated with paired multi-year data.

https://www.sciencedirect.com/science/article/pii/S0043135422010259

Zusammenfassung

This policy brief provides an overview of current gaps in the EU legislative framework that hinder the realization of the benefits of digitalisation in the water sector and offers concrete recommendations on how to overcome them. It builds on the findings of five Horizon 2020 projects that address different aspects of digitalisation in the water sector and jointly form the DigitalWater2020 (DW2020) synergy group: digital-water.city, ScoreWater, Fiware4Water, NAIADES and aqua3s. All five projects are the active members of the ICT4Water cluster. This policy brief highlights that digital solutions and innovations are needed to ensure sustainable and cost-efficient water management that can tackle challenges such as climate change, pollution and depletion of water resources and cyber threats. Currently, digital solutions are not sufficiently integrated into EU water policies. EU policies are missing a coherent terminology and clear definitions of digitalisation in the water sector. At the same time, they have different targets and different target audiences. As a result, users of water services and even providers of digital services in the water sector often either do not know or do not understand the relevant water policies. Another hindering factor for the full use of the potential of digitalisation in the water sector is the lack of technology guidance and standards for monitoring. Currently, EU and municipal policy makers must make fundamental decisions on future investments in the water sector. These decisions should be guided by EU policies that enable the Twin Transition (digital and green transition) in the EU water sector, making the EU a sustainable and climate-proof industry leader. As Next Generation Internet Technology (NGI) becomes more affordable (e.g. IoT, Blockchain, augmented reality, etc), different use cases in the water sector need to be better understood and adopted. EU policies should better harness the potential of digital solutions. Common shortcomings are related to digital infrastructure and security, integration, standardisation, data sharing, and public involvement. Policy makers must recognise the importance of digitalising the water sector to dramatically advance the management of water. New digital solutions may improve the transparency and efficiency of decision-making within Integrated Water Resources Management. Digital data can make policies more tangible, understandable, and widely accepted.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.